Showing posts with label technology that works. Show all posts
Showing posts with label technology that works. Show all posts

Monday, 4 June 2012

Nanocopters, Smartbirds, and beyond

Hardly a week goes by without an amazing new robot video showing up on the web. After diligently watching well over a hundred of them, I’ve collected a number of videos that demonstrate the incredible capabilities of modern robotics. Think of this as a primer on awesome robot videos as well as a refresher on some of the most viral technology videos to hit the web recently.

Quadcopters are definitely cool, like the construction ‘copters we wrote about earlier this year. Nanocopters, though, bring awesomeness to a new level, with their maneuverability and dare I say cuteness. As robots go, they aren’t the smartest on their own — since they rely on nearby computers for high-level programming and in this case their vision — but as a system they are capable of some amazing stunts. These two quadcopters, shown in the ETH’s Flying Machine Arena in Zurich, can respond to the ball more quickly than a human pilot would be able to. To give you a better idea of what swarms of nanocopters are capable of, here is a video from the University of Pennsylvania’s GRASP lab, featuring a variety of solo and “swarm” stunts.

However, if you think humans are about to let a bunch of plastic ‘bots take the formation crown, think again. These Japanese show that humans can perform in unison as well:
If you’d like to learn more about what it takes to program a swarm of nanocopters, there is an excellent TED Talk on the how to of building and programming nanocopters:
Finally, if you haven’t seen it yet, robots indeed have their own version of silly kitty videos. Here the University of Pennsylvania’s swarm is programmed:


Monday, 28 May 2012

MIT Researchers Develop Painless Needle-Less Syringe

Injection via needle and syringe is the quickest way to transfuse medicine and fluids into one's body, but not everyone is a fan of shots. Many people have a fear of needles -- "aichmophobia," it's called -- while others frequently self-inject and simply don't want to inject themselves all the time. While completely understandable, it's a dilemma that scientists from the Massachusetts Institute of Technology are setting out to solve.

MIT researchers unveiled a prototype device on Thursday that uses a new way to administer drugs, replacing the common needle with a tiny, highly-controllable jet injector, which sends a high-pressured stream directly into the skin. The jet can both inject into and aspirate from tissue, and the device is controlled via a computer interface, which can control the volume of the drug delivery, and the velocity at which it moves.
"We were able to fire the drug out at almost the speed of sound if we need to -- the speed of sound in air is about 340 meters per second," said professor Ian Hunter, who runs the bioinstrumentation lab at MIT's Department of Mechanical Engineering. "It's capable of pressurizing the drug up to 100 megapascales (MPas), and we can do that in under a millisecond."

Hunter worked on this project with MIT colleague Dr. Catherine Hogan, as well as a handful of "talented post-docs and others in the lab." Hogan explains how the device works: "There's a magnet in the center of our jet injector that's surrounded by a coil of wire, and when we apply a current to the coil, we create a Lorentz Force that pushes this piston, which forces the drug out of the ampoule," Hogan said. "This gives us a tremendous amount of control depending on how much current we put in, so that we can successfully deliver a wide variety of volumes of drug at a wide variety of velocities with a very low degree of error, something a needle can't do."

There are other advantages of MIT's jet injector over needles: For instance, doctors would be able to control the speed of the injection throughout the duration of the delivery, so it can be quickened or slowed depending on the drug and the patient. "We can also change the velocity over the course of a single injection, so it breaches the skin at one velocity, and then disperses the drug at another," Hogan said. "We accelerate the coil to the desired speed, hold it there for a defined time, and the decelerate to a lower velocity to disperse and absorb the drug into the tissue."


But besides giving doctors better control over injections, the best part of this technology is that it is virtually painless -- in fact, patients won't feel much of anything at all. Hunter explains why: "The drug comes out of this fine jet -- about the same diameter as a mosquito proboscis -- and as many of you know, you don't feel when a mosquito inserts its proboscis into your skin because it's so very narrow," Hunter said. "Our jet is of a similar diameter."

The thinness of the jet makes it perfect for some of the most scariest procedures that involve needles, which is why MIT's research team is developing other ways to utilize this technology. "We've also developed this device so it can for delivery of drugs right through the eye into the retina," Hunter said. "We've succeeded in delivering drugs through the tympanic membrane in your ear, so that we can deliver drugs to the middle and inner ear. And we've also done something that we think is pretty cool: We can take a drug in powdered form, put it in this device, and the device -- because of its very, very fast response -- is able to vibrate that powder so it behaves like a liquid, and then we inject it into tissue as though it was a liquid, even though it's a powder."

Even though this is not the first attempt to create a painless needle, or a new take on the needle, MIT believes this technology is superior with its highly-controlled system for limiting the injection velocity and dosage, but also it's ability to bring ease to patients with needle phobias. An instantaneous, painless injection beats a stinging shot any day of the week.


Thursday, 3 May 2012

Convert 2-D Patterns Into 3-D Objects, Using Light


Researchers from North Carolina State University have developed a simple way to convert two-dimensional patterns into three-dimensional (3-D) objects using only light. “This is a novel application of existing materials, and has potential for rapid, high-volume manufacturing processes or packaging applications,” says Dr. Michael Dickey, an assistant professor of chemical and biomolecular engineering at NC State and co-author of a paper describing the research.

The process is remarkably simple. Researchers take a pre-stressed plastic sheet and run it through a conventional inkjet printer to print bold black lines on the material. The material is then cut into a desired pattern and placed under an infrared light, such as a heat lamp. A video demonstration can be seen here. The bold black lines absorb more energy than the rest of the material, causing the plastic to contract – creating a hinge that folds the sheets into 3-D shapes. This technique can be used to create a variety of objects, such as cubes or pyramids, without ever having to physically touch the material. The technique is compatible with commercial printing techniques, such as screen printing, roll-to-roll printing, and inkjet printing, that are inexpensive and high-throughput but inherently 2-D.

By varying the width of the black lines, or hinges, researchers are able to change how far each hinge folds. For example, they can create a hinge that folds 90 degrees for a cube, or a hinge that folds 120 degrees for a pyramid. The wider the hinge, the further it folds. Wider hinges also fold faster, because there is more surface area to absorb energy.

“You can also pattern the lines on either side of the material,” Dickey says, “which causes the hinges to fold in different directions. This allows you to create more complex structures.”

The researchers developed a computer-based model to explain how the process works. There were two key findings. First, the surface temperature of the hinge must exceed the glass transition temperature of the material, which is the point at which the material begins to soften. Second, the heat has to be localized to the hinge in order to have fast and effective folding. If all of the material is heated to the glass transition temperature, no folding will occur.

“This finding stems from work we were doing on shape memory polymers, in part to satisfy our own curiosity. As it turns out, it works incredibly well,” Dickey says.

The paper, “Self-folding of polymer sheets using local light absorption,” was published Nov. 10 in the journal Soft Matter, and was co-authored by Dickey; NC State Celanese Professor of Chemical and Biomolecular Engineering Jan Genzer; NC State Ph.D. student Ying Liu; and NC State undergraduate Julie Boyles. The work was supported, in part, by the U.S.



Monday, 23 April 2012

Rise of the Machines in America's Military... sand fleas & roaches are the new Soldiers!

 RHex is a six-legged, 30-pound crawling bot inspired by cockroaches. It squirms around through mud, streams, and rocky terrain, going up to six hours on a battery charge. Boston Dynamics, who are the creators of the very awesome BigDog and a menagerie of other bots, is sending two small reconnaissance robots to the U.S. Army for testing.
                                                                                   Sand Flea and RHex, developed from the funding from the Army's Rapid Equipping Force, are off to the Army Test and Evaluation Command to pass safety and reliability assessments.Three RHex units have already been delivered to ATEC and Sand Fleas will join them later this year, Boston Dynamics said in a release. The machines could improve soldiers' awareness of threats in war.




Thursday, 19 April 2012

Laser-Guided Bullet

Sandia National Laboratories engineers, have developed a patented design for a laser-guided bullet. The 4″-long laser-guided projectile has made hits at ranges up to 2000 meters. No this is NOT an April Fools’ joke. The projectile shoots from a smooth-bore rifle and uses small, movable fins to adjust its trajectory. The fins are controlled by micro-sized actuators in response to signals from a tiny, onboard laser-sensor. Plastic sabots provide a gas seal and protect the delicate fins while the projectile is in the firearm’s barrel.
The researchers Red Jones and Brian Kast (and colleagues) have invented a dart-like, self-guided bullet for small-caliber, smooth-bore firearms that could hit laser-designated targets at distances of more than a mile. “We have a very promising technology to guide small projectiles that could be fully developed inexpensively and rapidly,” Jones said. Researchers have had initial success testing the design in computer simulations and in field tests of prototypes, built from commercially available parts, Jones said. While engineering issues remain, “we’re confident in our science base and we’re confident the engineering-technology base is there to solve the problems,” he told.

The design for the four-inch-long bullet includes an optical sensor in the nose to detect a laser beam on a target. The sensor sends information to guidance and control electronics that use an algorithm in an eight-bit central processing unit to command electromagnetic actuators. Theseactuators steer tiny fins that guide the bullet to the target.


Fin-Stabilization — Like on a Guided Missile
The guided projectile is shot from smooth bore barrel with no rifling. While conventional bullets are spin-stabilized, Scandia’s guided bullet doesn’t spin in flight. To enable the guided bullet to adjust its trajectory toward a target and to simplify the design, the spin had to go, Jones said. As on most guided missiles, fins both stabilize and steer the projectile. But on this projectile, the fins are tiny — just a few millimeters tall.
The bullet flies straight due to its aerodynamically stable design, which consists of a center of gravity that sits forward in the projectile and tiny fins that enable it to fly without spin, just as a dart does, he said. The four-inch-long bullet has actuators that steer tiny fins that guide it to its target.

Projectile Flies at 2400 fps — More Speed Is Possible
Testing has shown the electromagnetic actuator performs well and the bullet can reach speeds of 2,400 feet per second, or Mach 2.1, using commercially available gunpowder. The researchers are confident it could reach standard military speeds using customized gunpowder.
Sub-MOA Accuracy at 1000m — No Matter What the Wind Does
Computer aerodynamic modeling shows the design would result in dramatic improvements in accuracy, Jones said. Computer simulations showed an unguided bullet under real-world conditions could miss a target more than a half mile away (1,000 meters away) by 9.8 yards (9 meters), but a guided bullet would get within 8 inches (0.2 meters), according to the patent.
The prototype does not require a device found in guided missiles called an inertial measuring unit, which would have added substantially to its cost. Instead, the researchers found that the bullet’s relatively small size when compared to guided missiles “is helping us all around. It’s kind of a fortuitous thing that none of us saw when we started,” he said.
As the bullet flies through the air, it pitches and yaws at a set rate based on its mass and size. In larger guided missiles, the rate of flight-path corrections is relatively slow, so each correction needs to be very precise because fewer corrections are possible during flight. But “the natural body frequency of this bullet is about 30 hertz, so we can make corrections 30 times per second. That means we can over-correct, so we don’t have to be as precise each time,” he said.

Projectile Becomes More Stable After Launch
Researchers also filmed high-speed video of the bullet radically pitching as it exited the barrel. The bullet pitches less as it flies down range, a phenomenon known to long-range firearms experts as “going to sleep.” Because the bullet’s motions settle the longer it is in flight, accuracy improves at longer ranges, Jones said. “Nobody had ever seen that, but we’ve got high-speed video photography that shows that it’s true".